PCR targeting system in Streptomyces coelicolor A3(2)

Bertolt Gust, Tobias Kieser and Keith Chater, John Innes Centre, Norwich Research Park, Colney, Norwich NR47UH, UK, Tel: +44 (0)1603 452751 Fax: +44 (0)1603 456844

Introduction

Many bacteria are not readily transformable with linear DNA because of the presence of the intracellular recBCD exonuclease that degrades linear DNA. However, the λ RED (gam, bet, exo) functions promote a greatly enhanced rate of recombination when using linear DNA. By exploiting this, Datsenko and Wanner (2000) made 40 different disruptions on the E. coli chromosome by replacing the wild-type sequences with a selectable marker generated by PCR using primers with 36 nt homology extensions.

The strategy for PCR-targeting for mutagenesis of Streptomyces coelicolor is to replace a chromosomal sequence within a S. coelicolor cosmid (Redenbach et al., 1996) by a selectable marker that has been generated by PCR using primers with 39 nt homology extensions. The inclusion of oriT (RK2) in the disruption cassette allows conjugation to be used to introduce the PCR targeted cosmid DNA into S. coelicolor. Conjugation is much more efficient than transformation of protoplasts and it is readily applicable to many actinomycetes (Matsushima et al., 1994). The potent methylspecific restriction system of S. coelicolor is circumvented by passaging DNA through a methylation-deficient E. coli host such as ET12567 (MacNeil et al., 1992). Vectors containing oriT (RK2; Pansegrau et al., 1994) are mobilisable in trans in E. coli by the self-transmissible pUB307 (Bennett et al., 1977, Flett et al., 1997) or the non-transmissible pUZ8002, which lacks a cis-acting function for its own transfer (Kieser et al., 2000).

To adapt the procedure of λ RED mediated recombination for Streptomyces, cassettes for gene disruptions were constructed that can be selected both in E. coli and in Streptomyces (Table 1). After a single disruption with an oriT-containing cassette, further disruptions can be performed on the same cosmid using oriT-free cassettes containing alternative selective markers. The λ RED recombination plasmid pKD20
(E. coli Genetic Stock Center CGSC Strain \# 7637) was modified by replacing the ampicillin resistance gene bla with the chloramphenicol resistance gene cat, generating pIJ790, to permit selection in the presence of Supercos1-derived cosmids (ampicillin and kanamycin resistance).

Name of plasmid	Resistance- marker	Resistance	Concentration for E. coli	oriT	Size of template
pIJ773 Fig. 5	$\operatorname{aac}(3) I V$	apramycin	$50 \mu \mathrm{~g} / \mathrm{ml} \mathrm{LB}$	+	1382 bp
pIJ778 Fig. 6	aadA	spectinomycin streptomycin	$50 \mu \mathrm{~g} / \mathrm{ml} \mathrm{LB}$ $50 \mu \mathrm{~g} / \mathrm{m} \mathrm{LB}$	+	1425 bp
pIJ779.	aadA	spectinomycin- streptomycin	$50 \mu \mathrm{~g} / \mathrm{ml} \mathrm{LB}$ $50 \mu \mathrm{~g} / \mathrm{ml} \mathrm{LB}$	-	1057 bp
pIJ780					
Fig.7	$v p h$	viomycin	$30 \mu \mathrm{~g} / \mathrm{ml} \mathrm{DNA}$	+	1497 bp
pIJ781	$v p h$	viomycin	$30 \mu \mathrm{~g} / \mathrm{ml} \mathrm{DNA}$	-	1622 bp

Table 1: Disruption cassettes containing different resistance markers with and without oriT: All disruption cassettes were cloned into the EcoRV site of pBluescript SK II (+) allowing the isolation of a EcoRI/HindIII fragment for use as template for the PCR reaction. The size of the cassettes includes the 19 bp and 20 bp primer site (see section 2: "primer design") which are identical in all disruption cassettes. The resistance genes with or without oriT are flanked by FRT sites (FLP recognition targets) which allows FLP-mediated excision of the cassette (see section 7: "FLP-mediated excision of the disruption cassette").

Fig. 1: Flowchart of gene disruption by PCR-targeting

Protocol (see Flowchart Fig. 1)

1 Purification of the PCR template (resistance (-oriT) cassette)

Using whole plasmids as templates for the PCR can result in a high proportion of antibiotic-resistant transformants without gene disruption. This is caused by traces of CCC DNA that compete with the linear PCR fragment and result in the occurrence of false positive transformants. Using gel-purified disruption cassettes as templates prevents the occurrence of false positives.

1. Digest $\sim 10 \mu \mathrm{~g}$ plasmid DNA (see Table 1) with 50 U EcoRI (Roche) and 50 U HindIII (Roche) in 1 X buffer B (Roche) in a $100 \mu 1$ reaction.

- A 2938 bp vector fragment and a fragment 14 bp larger than the size of the cassette given in Table 1 should be generated.

2. Run the digest on a $20 \times 20 \times 0.25 \mathrm{~cm}(100 \mathrm{ml}) 1 \%$ TAE (1x) agarose gel at $5 \mathrm{~V} / \mathrm{cm}$ for $2-3 \mathrm{~h}$ in 1 x TAE buffer.

- Longer runs exhaust the buffer capacity and destroy the gel unless the buffer is recycled.

3. Cut out the cassette band from the gel and purify using the Qiagen gel extraction kit. The purified fragment is stored in 10 mM Tris. $\mathrm{HCl}(\mathrm{pH} 8)$ at a concentration of $100 \mathrm{ng} / \mu \mathrm{l}$ at $-20^{\circ} \mathrm{C}$.
4. Absence of plasmid DNA is tested by using $1 \mu \mathrm{l}(100 \mathrm{ng})$ of purified cassette DNA to transform highly competent E. coli DH5 α cells $\left(10^{8} / \mu \mathrm{g}\right)$. Plate on LB agar containing $100 \mu \mathrm{~g} / \mathrm{ml}$ carbenicillin. If any transformants appear, repeat steps 2-4.

2 Design of long PCR primers

For each gene disruption, two long PCR primers (58 nt and 59 nt) are required. Each has at the 5 'end 39 nt matching the S . coelicolor sequence adjacent to the gene to be inactivated, and a 3 'sequence (19 nt or 20 nt) matching the right or left end of the disruption cassette (all cassettes have the same "right" and "left" ends). The precise positioning of the 39 nt sequence as indicated in Fig. 2 is important for creating inframe deletions by FLP recombinase-induced excision of the resistance marker (see section 7).

- The 5'- 39 nt sequence of the forward primer (upstream primer; Fig. 2) must be from the coding strand of the gene of interest and its 3 ' end must be in the correct reading frame with respect to the replaced gene. The 5'-39 nt sequence of the reverse primer (downstream primer; Fig. 2) must be from the complementary strand.
- To prevent unwanted recombination, a BlastN search is performed comparing each 39 nt sequence with the "real cosmid" (sequences at the Sanger Centre Homepage in the folder ftp.sanger.ac.uk/pub/S coelicolor/cosmid inserts and on the $C D$ in the folder /S_coelicolor/cosmid inserts). The perfect match should be found but no other matches >30 bp. If necessary, the 39 nt sequence is shifted in $\mathbf{3 n t}$ steps until the above criteria are met.

Fig.2: Designing PCR primers for making an in-frame deletion

(the example illustrates a complete deletion)

39 nt from sense strand ending in ATG or GTG start codon
 If sequence with >30 matches occurs in cosmid clone, move $\rightarrow 3 n$ nt to maintain frame

NNNN	\ldots.
ATG	
NNNN	\ldots.

Gene to be deleted
39 nt from anti-sense strand ending in Stop codon
\leftarrow move $-3 n \mathrm{nt}$ if necessary

58 nt downstream primer

3 PCR amplification of the extended resistance cassette

All PCR amplifications are performed using the Expand high fidelity PCR system according to the manufacturer's instructions (Roche). Reaction conditions:

- Primers ($100 \mathrm{pmoles} / \mu \mathrm{l}$)
- Template DNA ($100 \mathrm{ng} / \mu \mathrm{l}$)
- Buffer (10x)
- dNTPs (10 mM)
- DMSO (100 \%)
- DNA polymerase ($2.5 \mathrm{U} / \mu \mathrm{l}$)
- Water
- Total volume
$0.5 \mu \mathrm{l}$ each $\quad 50$ pmoles each
$0.5 \mu \mathrm{l} \quad 50 \mathrm{ng} \approx 0.06$ pmoles
$5 \mu 1 \quad 1 \mathrm{x}$
$1 \mu \mathrm{l}$ each $\quad 50 \mu \mathrm{M}$ each
$2.5 \mu \mathrm{l} \quad 5 \%$
$1 \mu \mathrm{l}$
2.5 Units
$50 \mu \mathrm{l}$

Cycle conditions:

1. Denaturation: $\quad 94^{\circ} \mathrm{C}, 2 \mathrm{~min}$
2. Denaturation: $\quad 94^{\circ} \mathrm{C}, 45 \mathrm{sec}$
3. Primer annealing: $\left.\mathbf{5 0}^{\circ} \mathbf{C}, 45 \mathrm{sec}\right\} 10$ cycles
4. Extension: $\quad 72^{\circ} \mathrm{C}, 90 \mathrm{sec}$
5. Denaturation: $\quad 94^{\circ} \mathrm{C}, 45 \mathrm{sec}$
6. Primer annealing:
7. Extension:
$\left.\begin{array}{l}\mathbf{5 5}{ }^{\circ} \mathbf{C}, 45 \mathrm{sec} \\ 72^{\circ} \mathrm{C}, 90 \mathrm{sec}\end{array}\right\} 15$ cycles
8. Final extension:
$5 \mu \mathrm{l}$ of the PCR product is used for analysis by gel electrophoresis. The expected sizes are 78 bp larger than the sizes of the disruption cassettes listed in Table $\mathbf{1}$ (because of the $2 \times 39 \mathrm{bp} 5^{\prime}$-primer extensions). The remaining $45 \mu \mathrm{l}$ of the PCR product is purified using the Qiagen PCR purification kit according to the manufacturer's instructions. The PCR product is finally eluted from the columns with $12 \mu \mathrm{l}$ of water ($\sim 200 \mathrm{ng} / \mu \mathrm{l}$).

4 Introduction of S. coelicolor cosmid clone into E. coli BW25113/pIJ790 (λ RED recombination plasmid) by electroporation
pIJ790 contains the resistance marker cat (chloramphenicol resistance) and a temperature sensitive origin of replication (requires $30^{\circ} \mathrm{C}$ for replication).

1. Grow E. coli BW25113/pIJ790 overnight at $30^{\circ} \mathrm{C}$ in 10 ml LB (Luria-Bertani medium; Sambrook et al., 1998) containing chloramphenicol ($25 \mu \mathrm{~g} / \mathrm{ml}$).
2. Inoculate $100 \mu \mathrm{E}$. coli BW25113/pIJ790 from overnight culture in 10 ml SOB (Hanahan, 1983) containing 20 mM MgSO 4 (add $200 \mu \mathrm{l}$ of 1 M stock to $10 \mathrm{ml} \mathrm{SOB})$ and chloramphenicol ($25 \mu \mathrm{~g} / \mathrm{ml}$).
3. Grow for $3-4 \mathrm{~h}$ at $30^{\circ} \mathrm{C}$ shaking at 200 rpm to an OD_{600} of ~ 0.4.
4. Recover the cells by centrifugation at 4000 rpm for 5 min at $4^{\circ} \mathrm{C}$ in a Sorvall GS3 rotor (or equivalent).
5. Decant medium and resuspend the pellet by gentle mixing in 10 ml ice-cold 10 \% glycerol.
6. Centrifuge as above and resuspend pellet in 5 ml ice-cold 10% glycerol, centrifuge and decant. Resuspend the cell pellet in the remaining $\sim 100 \mu \mathrm{l}$ 10 \% glycerol.
7. Mix $50 \mu \mathrm{l}$ cell suspension with $\sim 100 \mathrm{ng}(1-2 \mu \mathrm{l})$ of cosmid DNA. Carry out electroporation in a 0.2 cm ice-cold electroporation cuvette using a BioRad GenePulser II set to: $200 \Omega, 25 \mu \mathrm{~F}$ and $2,5 \mathrm{kV}$. The expected time constant is $4.5-4.9 \mathrm{~ms}$.
8. Immediately add 1 ml ice cold LB to shocked cells and incubate shaking for 1 h at $30^{\circ} \mathrm{C}$.
9. Spread onto LB agar containing carbenicillin ($100 \mu \mathrm{~g} / \mathrm{ml}$), kanamycin ($50 \mu \mathrm{~g} / \mathrm{ml}$) and chloramphenicol ($25 \mu \mathrm{~g} / \mathrm{ml}$).
10. Incubate overnight at $30^{\circ} \mathrm{C}$.
11. Transfer one isolated colony into 5 ml LB containing antibiotics as in (9) above.
12. Incubate overnight at $30^{\circ} \mathrm{C}$. This culture will be used as a pre-culture for generating competent cells to be transformed with the extended resistance cassette.

5 PCR targeting of the S. coelicolor cosmid

E. coli BW25113/pIJ790 containing a S. coelicolor cosmid is electro-transformed with the extended resistance cassette. The example described uses the apramycin oriT disruption cassette from pIJ773. Table 1 lists alternative cassettes and their resistance determinants.

1. Inoculate a 10 ml SOB (without MgSO_{4}) culture containing carbenicillin (100 $\mu \mathrm{g} / \mathrm{ml}$), kanamycin ($50 \mu \mathrm{~g} / \mathrm{ml}$) and chloramphenicol ($25 \mu \mathrm{~g} / \mathrm{ml}$) with 1% of the overnight culture of E. coli BW25113/pIJ790 and the S. coelicolor cosmid. Add $100 \mu \mathrm{l}$ M L-arabinose stock solution (final concentration is 10 mM , induces red genes).
2. Grow for $3-4 \mathrm{~h}$ at $30^{\circ} \mathrm{C}$ shaking at 200 rpm to an OD_{600} of ~ 0.4.
3. Recover the cells by centrifugation at 4000 rpm for 5 min at $4^{\circ} \mathrm{C}$ in a Sorvall GS3 rotor (or equivalent).
4. Decant medium and resuspend the pellet by gentle mixing in 10 ml ice-cold 10\% glycerol.
5. Centrifuge as above and resuspend pellet in 5 ml ice-cold 10% glycerol, centrifuge and decant. Resuspend the cell pellet in remaining ~ $100 \mu \mathrm{l} 10 \%$ glycerol.
6. Mix $50 \mu \mathrm{l}$ cell suspension with $\sim 100 \mathrm{ng}(1-2 \mu \mathrm{l})$ of PCR product. Carry out electroporation in a 0.2 cm ice-cold electroporation cuvette using a BioRad GenePulser II set to: $200 \Omega, 25 \mu \mathrm{~F}$ and $2,5 \mathrm{kV}$. The expected time constant is $4.5-4.9 \mathrm{~ms}$.
7. Immediately add 1 ml ice cold LB to shocked cells and incubated shaking 1 h at $37^{\circ} \mathrm{C}$ (or $30^{\circ} \mathrm{C}$ if further gene disruptions will be made on the same cosmid; see below).
8. Spread onto LB agar containing carbenicillin ($100 \mu \mathrm{~g} / \mathrm{ml}$), kanamycin ($50 \mu \mathrm{~g} / \mathrm{ml}$) and apramycin ($50 \mu \mathrm{~g} / \mathrm{ml}$). If no further gene disruptions will be made on this cosmid, incubate overnight at $37^{\circ} \mathrm{C}$ to promote the loss of pIJ790. (If further disruptions are planned propagate overnight at $30^{\circ} \mathrm{C}$ and include chloramphenicol ($25 \mu \mathrm{~g} / \mathrm{ml}$) so that pIJ790 is retained).

- If no colonies are obtained after 16 h growth at $37^{\circ} \mathrm{C}$, repeat the experiment starting with a 50 ml SOB culture instead of 10 ml culture for generating electrocompetent cells. Try to concentrate the cells as much as possible by removing all of the remaining $\mathbf{1 0 \%}$ glycerol. Resuspend the cell pellet in $50 \mu \mathrm{l}$ 10% glycerol and use for electroporation.
- After 12 - $\mathbf{1 6} \mathbf{h}$ growth at $37^{\circ} \mathrm{C}$ different colony-sizes are observed. Cultivating for longer time results in an increased background of small colonies, which are false positives. It is important to note that at this stage wild-type and mutant cosmids exist within one cell. The transformation with a PCR product and its integration in the cosmid DNA by homologous recombination will not occur in all copies of the cosmid molecules in one cell. One copy of a cosmid containing the incoming resistance marker is sufficient for resistance to this antibiotic. Normally, the larger the size of a colony, the more copies of mutagenised cosmids are present. Inoculating a large colony in 5 ml LB liquid cultures containing carbenicillin ($100 \mu \mathrm{~g} / \mathrm{ml}$), kanamycin ($50 \mu \mathrm{~g} / \mathrm{ml}$) and apramycin $(50 \mu \mathrm{~g} / \mathrm{ml})$ result in a growth at $37^{\circ} \mathrm{C}$ to a cell density $\left(\mathrm{OD}_{600} \sim 0.1-0.3\right)$ within 3-4 h (E. coli BW25113 without pIJ790 grows very fast). After 6 h plasmid DNA can be isolated and tested by restriction analysis and/or PCR using the primers described below.
- PCR analysis with a primer pair (test primers) priming just $\sim \mathbf{1 0 0}$ bp outside the region affected by homologous recombination will generate the expected fragment after gene disruption, but will usually also generate the wild-type fragment, caused by remaining wild-type copies within the same transformant. These will be lost during the subsequent transformation step into the methylation-deficient E. coli host ET12567 containing the non-transmissible plasmid pUZ8002 (this is not a problem anyway because wild-type copies lack the orit).
- Notes on viomycin selection: selecting for viomycin ${ }^{R}$ depends critically on the amount of salt in the medium; more viomycin is required at higher salt concentrations. For a clean selection of E. coli clones, use DNA agar or 2xYT agar containing $30 \mu \mathrm{~g} / \mathrm{ml}$ viomycin (see Kieser et al., 2000).

For multiple gene replacements, choose an oriT-containing disruption cassette for the first knock-out, and a cassette without oriT and different resistance markers for further gene disruptions.

The gene disruption is confirmed by restriction analysis and/or PCR. Cosmid DNA of transformants is isolated from a $6 \mathrm{~h}, 37^{\circ} \mathrm{C}, 5 \mathrm{ml} \mathrm{LB}$ culture containing carbenicillin $(100 \mu \mathrm{~g} / \mathrm{ml})$, kanamycin ($50 \mu \mathrm{~g} / \mathrm{ml}$) and apramycin ($50 \mu \mathrm{~g} / \mathrm{ml}$). Alkaline lysis followed by phenol/chloroform extraction produces cosmid DNA suitable for restriction analysis.

Cosmid CCC DNA isolation

1. Resuspend the cell pellet from 1 ml culture by vortexing in $100 \mu \mathrm{l}$ solution I (50 mM Tris $/ \mathrm{HCl}, \mathrm{pH} 8 ; 10 \mathrm{mM}$ EDTA).
2. Immediately add $200 \mu 1$ solution II ($200 \mathrm{mM} \mathrm{NaOH} ; 1 \%$ SDS) and mix by inverting the tubes 10 x .
3. Immediately add 150μ l solution III (3 M potassium acetate, pH 5.5) and mix by inverting the tubes 5 x .
4. Spin at full speed in a microcentrifuge for 5 min at room temperature.
5. Immediately extract supernatant with $400 \mu 1$ phenol/chloroform, vortex 2 min and spin at full speed in a micro centrifuge for 5 min .
6. Transfer the upper phase and add $600 \mu \mathrm{l}$ 2-propanol. Leave the tubes on ice for 10 min .
7. Spin as above and wash the pellet with $200 \mu 170 \%$ ethanol.
8. Spin as above and leave the tube open for 5 min at room temperature to dry the pellet. Resuspend the pellet in $50 \mu 110 \mathrm{mM}$ Tris $/ \mathrm{HCl}(\mathrm{pH} 8)$ and use $10 \mu \mathrm{l}$ for restriction digest.

- Omitting the phenol/chloroform extraction step results in degradation of the cosmid DNA. Use of miniprep-columns without including a phenol/chloroform extraction is not recommended.

Verification of positive transformants by PCR requires an additional pair of $18-20 \mathrm{nt}$ test primers which anneal $100-200 \mathrm{bp}$ upstream and downstream of the 39 bp recombination region. (These primers can also be used later to verify the FLPmediated excision of the resistance cassette.)

- Primers ($100 \mathrm{pmoles} / \mu \mathrm{l}$)
- Template DNA ($\sim 50 \mathrm{ng} / \mu \mathrm{l})$
- Buffer (10x)
- dNTPs (10 mM)
- DMSO (100 \%)
- DNA polymerase ($2.5 \mathrm{U} / \mu \mathrm{l}$)
- Water
- Total volume
$0.2 \mu \mathrm{l}$ each 20 pmoles each
$1 \mu \mathrm{l} \quad 50 \mathrm{ng}$
$5 \mu \mathrm{l} \quad 1 \mathrm{x}$
$1 \mu \mathrm{l}$ each $\quad 50 \mu \mathrm{M}$ each
$2.5 \mu \mathrm{l} \quad 5 \%$
$1 \mu \mathrm{l}$
2.5 Units
$36.1 \mu \mathrm{l}$
$50 \mu \mathrm{l}$

Cycle conditions:

1. Denaturation: $\quad 94^{\circ} \mathrm{C}, 2 \mathrm{~min}$
2. Denaturation: $\quad 94^{\circ} \mathrm{C}, 45 \mathrm{sec}$
3. Primer annealing: $\left.55^{\circ} \mathrm{C}, 45 \mathrm{sec}\right\} 30$ cycles
4. Extension: $\quad 72^{\circ} \mathrm{C}, 90 \mathrm{sec}$
5. Final extension: $\quad 72^{\circ} \mathrm{C}, 5 \mathrm{~min}$
$5 \mu 1$ of the PCR product is used for gel electrophoresis.

6 Transfer of the mutant cosmids into Streptomyces

If the target Streptomyces for mutagenesis carries a methyl-sensing restriction system (as is the case for S. coelicolor and S. avermitilis), it is necessary to passage the cosmid containing an apramycin resistance-oriT cassette through a non-methylating E. coli host. To achieve this, it is introduced by transformation into the nonmethylating E. coli ET12567 containing the RP4 derivative pUZ8002. The cosmid is then transferred to Streptomyces by intergeneric conjugation (see Table 2 for resistance markers). If the target Streptomyces for mutagenesis does not carry a methyl-sensing restriction system (as is the case for S. lividans), common E. coli strains such as DH5 α containing pUZ8002 can be used instead.

Description	Name	Replication	Carb $^{\mathbf{R}}$	Cml $^{\mathbf{R}}$	Kan $^{\mathbf{R}}$	Tet $^{\mathbf{R}}$
S. coelicolor cosmid clones	Supercos 1		Carb $^{\mathrm{R}}$		$\mathrm{Kan}^{\mathrm{R}}$	
λ Red plasmid	pIJ790	t^{s}		$\mathrm{Cml}^{\mathrm{R}}$		
FLP recombinase plasmid	BT340	t^{s}	Carb $^{\mathrm{R}}$	$\mathrm{Cml}^{\mathrm{R}}$		
OriT RP4 derivative	pUZ8002				$\mathrm{Kan}^{\mathrm{R}}$	
OriT ${ }^{+}$RP4 derivative	pUB307				$\mathrm{Kan}^{\mathrm{R}}$	
Non-methylating E. coli	ET12567			$\mathrm{Cml}^{\mathrm{R}}$		$\operatorname{Tet}^{\mathrm{R}}$

Table 2. Resistance markers of vectors, helper plasmids and strains (carbenicillin resistance (Carb ${ }^{R}$), chloramphenicol resistance $\left(\mathrm{Cml}^{\mathrm{R}}\right)$, kanamycin resistance $\left(\operatorname{Kan}^{\mathrm{R}}\right)$, tetracycline resistance $\left(\mathrm{Tet}^{\mathrm{R}}\right)$, temperature sensitive replicon $\left(\mathrm{t}^{\mathrm{S}}\right)$). See Table $\mathbf{1}$ for replacement cassettes.

1. Prepare competent cells of E. coli ET12567/pUZ8002 grown at $37^{\circ} \mathrm{C}$ in LB containing kanamycin ($25 \mu \mathrm{~g} / \mathrm{ml}$) and chloramphenicol $(25 \mu \mathrm{~g} / \mathrm{ml})$ to maintain selection for pUZ8002 and the dam mutation, respectively. (ET12567 has a doubling time > 30 min .)

- High competence is required when Dam-methylated plasmids are introduced into a dam ${ }^{-1}$ strain.

2. Transform competent cells with the oriT-containing cosmid clone, and select for the incoming plasmid only using apramycin ($50 \mu \mathrm{~g} / \mathrm{ml}$) and carbenicillin ($100 \mu \mathrm{~g} / \mathrm{ml}$) .
3. Inoculate a colony into 10 ml LB containing apramycin ($50 \mu \mathrm{~g} / \mathrm{ml}$), chloramphenicol ($25 \mu \mathrm{~g} / \mathrm{ml}$) and kanamycin ($50 \mu \mathrm{~g} / \mathrm{ml}$). Grow overnight at $37^{\circ} \mathrm{C}$.

- Chloramphenicol ${ }^{5}$ or Kanamycin $^{\mathrm{S}}$ segregants arise frequently among transformants, so set up more than one culture. The kanamycin selection is probably ineffective because both the cosmid and pUZ8002 confer resistance (Table 2).

4. Inoculate $100 \mu \mathrm{l}$ overnight culture into 10 ml fresh LB plus antibiotics as above and grow for $\sim 4 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$ to an OD_{600} of 0.4.
5. Wash the cells twice with 10 ml of LB to remove antibiotics that might inhibit Streptomyces, and resuspend in 1 ml of LB.
6. While washing the E. coli cells, for each conjugation add $10 \mu \mathrm{l}\left(10^{8}\right)$ Streptomyces spores to $500 \mu 12 \times$ YT broth. Heat shock at $50^{\circ} \mathrm{C}$ for 10 min , then allow to cool.
7. Mix 0.5 ml E. coli cell suspension and 0.5 ml heat-shocked spores and spin briefly. Pour off most of the supernatant, then resuspend the pellet in the c. $50 \mu 1$ residual liquid.
8. Make a dilution series from 10^{-1} to 10^{-4} each step in a total of $100 \mu \mathrm{l}$ of water.
9. Plate out $100 \mu \mathrm{l}$ of each dilution on MS agar +10 mM MgCl 2 (without antibiotics) and incubate at $30^{\circ} \mathrm{C}$ for $16-20 \mathrm{~h}$.
10. Overlay the plate with 1 ml water containing 0.5 mg nalidixic acid ($20 \mu \mathrm{l}$ of $25 \mathrm{mg} / \mathrm{ml}$ stock; selectively kills E. coli) and 1.25 mg apramycin ($25 \mu \mathrm{l}$ of $50 \mathrm{mg} / \mathrm{ml}$ stock). Use a spreader to lightly distribute the antibiotic solution evenly. Continue incubation at $30^{\circ} \mathrm{C}$.
11. Replica-plate each MS agar plate with single colonies onto DNA plates containing nalidixic acid ($25 \mu \mathrm{~g} / \mathrm{ml}$) and apramycin ($50 \mu \mathrm{~g} / \mathrm{ml}$) with and without kanamycin $(50 \mu \mathrm{~g} / \mathrm{ml})$. Double cross-over exconjugants are kanamycin ${ }^{\mathrm{S}}$ and apramycin ${ }^{\mathrm{R}}$. (DNA gives fast, non-sporulating growth.)
12. Kanamycin ${ }^{\text {S }}$ clones are picked from the DNA plates and streaked for single colonies on MS agar (promotes sporulation) containing nalidixic acid ($25 \mu \mathrm{~g} / \mathrm{ml}$) and apramycin ($50 \mu \mathrm{~g} / \mathrm{ml}$).
13. Confirm kanamycin sensitivity by replica-plating onto DNA plates containing nalidixic acid ($25 \mu \mathrm{~g} / \mathrm{ml}$) with and without kanamycin $(50 \mu \mathrm{~g} / \mathrm{ml})$.
14. Purified kanamycin sensitive strains are then verified by PCR and Southern blot analysis.

- Typically, $\sim \mathbf{1 0} \%$ of the exconjugants are double cross-over recombinants. The frequency of double cross-overs depends on the length of the flanking regions of homologous DNA on the cosmid. If $<1 \mathbf{k b}$ is left on one side of the disrupted gene, obtaining kanamycin ${ }^{\text {s }}$ double cross-over types directly on the conjugation plates may be difficult. It may be necessary to streak out several exconjugants for single colonies on MS agar without antibiotics. After 3-5 days growth replica-plate onto DNA with and without kanamycin.

Antibiotic	Stock mg/ml	$\begin{gathered} \hline \mu \mathrm{l} \text { for } \\ 1 \mathrm{ml} \\ \text { overlay } \end{gathered}$	Final conc. after flooding $\mu \mathrm{g} / \mathrm{ml}$	Concentration in	
				$\begin{gathered} \hline \text { MS, DNA } \\ \mu \mathrm{g} / \mathrm{ml} \end{gathered}$	R2YE $\mu \mathrm{g} / \mathrm{ml}$
Apramycin	50	25	50	50	50
Kanamycin	50	100	200	50	200
Spectinomycin	200	25	200	400	400
Streptomcyin	10	25	10	10	10
Viomycin	30	25	30	30	NA
Nalidixic acid	$\begin{gathered} 25 \mathrm{in} \\ 0.3 \mathrm{M} \\ \mathrm{NaOH} \end{gathered}$	20	20	25	25

Table 3: Antibiotic concentrations for selection on S. coelicolor MS conjugation plates, DNA replica plates or R2YE protoplast regeneration plates (Note some small differences from Kieser et al., 2000).

7 FLP-mediated excision of the disruption cassette

The disruption cassettes are flanked by FRT sites (FLP recognition targets). Expression of the FLP-recombinase in E. coli removes the central part of the disruption cassette, leaving behind a 81 bp "scar" sequence which, in the preferred reading frame (bold in Fig. 3), lacks stop codons.

Fig. 3: Sequence of the 81 bp "scar" sequence remaining after FLP-mediated excision of the disruption cassette. The translation of the preferred reading frame is printed bold. The 20 and 19 nt priming sites are underlined and printed in colour. (Fig. 2 explains the determination of the reading frame.)
indicate stop codons,
priming site (20 nt) $\quad \square$ priming site (19 nt)

This allows the generation of (hopefully) non-polar, unmarked in-frame deletions and repeated use of the same resistance marker for making multiple knock-outs in the same cosmid or in the same strain. E. coli DH5 α cells containing the temperature sensitive FLP recombination plasmid BT340 (Datsenko and Wanner, 2000; can be obtained from the E. coli Genetic Stock Center: CGSC Strain\# 7629) are transformed with the mutagenised cosmid DNA (obtained in section 5). BT340 contains ampicillin and chloramphenicol resistance determinants and is temperature sensitive for replication (replicates at $30^{\circ} \mathrm{C}$). FLP synthesis and loss of the plasmid are induced at $42^{\circ} \mathrm{C}$ (Cherepanov and Wackernagel, 1995).

1. Grow E. coli $\mathrm{DH} 5 \alpha / \mathrm{BT} 340$ overnight at $30^{\circ} \mathrm{C}$ in 10 ml LB containing chloramphenicol ($25 \mu \mathrm{~g} / \mathrm{ml}$).

- Transforming E. coli BW25113/cosmid::apramycin (mutagenised cosmid) with the plasmid BT340 is not recommended because the isolates after PCR targeting may still contain copies of undisrupted cosmid DNA (see page 10, second paragraph).

2. Inoculate $100 \mu \mathrm{l}$ E. coli $\mathrm{DH} 5 \alpha / \mathrm{BT} 340$ from overnight culture into 10 ml LB containing chloramphenicol ($25 \mu \mathrm{~g} / \mathrm{ml}$).
3. Grow for $3-4 \mathrm{~h}$ at $30^{\circ} \mathrm{C}$ shaking at 200 rpm to an OD_{600} of ~ 0.4.
4. Recover the cells by centrifugation at 4000 rpm for 5 min at $4^{\circ} \mathrm{C}$ in a Sorvall GS3 rotor (or equivalent).
5. Decant medium and resuspend the pellet by gentle mixing in 10 ml icecold 10 \% glycerol.
6. Centrifuge as above and resuspend pellet in 5 ml ice-cold 10% glycerol, centrifuge and decant. Resuspend the cell pellet in remaining $\sim 100 \mu \mathrm{l}$ 10\% glycerol.
7. Mix $50 \mu \mathrm{l}$ cell suspension with $\sim 100 \mathrm{ng}(1-2 \mu \mathrm{l})$ of mutagenised cosmid DNA. Carry out electroporation in a 0.2 cm ice-cold electroporation cuvette using a BioRad GenePulser II set to: $200 \Omega, 25 \mu \mathrm{~F}$ and $2,5 \mathrm{kV}$. The expected time constant is $4.5-4.9 \mathrm{~ms}$.
8. Immediately add 1 ml ice cold LB to shocked cells and incubate shaking for 1 h at $30^{\circ} \mathrm{C}$.
9. Spread onto LB agar containing apramycin (50 $\mu \mathrm{g} / \mathrm{ml}$) and chloramphenicol ($25 \mu \mathrm{~g} / \mathrm{ml}$).
10. Incubate for 2 d at $30^{\circ} \mathrm{C}$ (E . coli DH5 $\alpha / \mathrm{BT} 340$ grows slowly at $30^{\circ} \mathrm{C}$).
11. A single colony is streaked on an LB agar plate without antibiotics for single colonies and grown overnight at $42^{\circ} \mathrm{C}$ to induce expression of the FLP recombinase followed by the loss of plasmid BT340.
12. Make two masterplates by streaking $20-30$ single colonies with a toothpick first on a LB agar plate containing apramycin ($50 \mu \mathrm{~g} / \mathrm{ml}$) and then on a LB agar plate containing kanamycin ($50 \mu \mathrm{~g} / \mathrm{ml}$).
13. Grow the masterplates overnight at $37^{\circ} \mathrm{C}$. Apramycin ${ }^{\mathrm{S}}$ kanamycin ${ }^{\mathrm{R}}$ clones indicate the successful loss of the resistance cassette and are further verified by restriction and PCR analysis.

- Typically, $\sim \mathbf{1 0} \%$ of the single colonies after non-selective growth lose the incoming resistance marker and the plasmid BT340 simultaneously.
- Using the same test primers as in section 5 (annealing ~ 100 bp upstream and downstream of the 39 nt primer sequence) should produce a PCR product of $\sim 300 \mathrm{bp}$ (200 bp +81 bp "scar"). PCR fragments can be sequenced using the amplification primers for verification.

Replacing resistance cassette inserts in S. coelicolor with the unmarked "scar" sequence

The chromosomal apramycin resistance cassette insert in S. coelicolor is replaced by the "scar" sequence. This is achieved by homologous recombination between the chromosome and the corresponding "scar cosmid" prepared in 7. The procedure differs from section 6 because the cosmid lacks oriT, and the desired product is antibiotic sensitive. Therefore, it is necessary to introduce the scar cosmid into Streptomyces by protoplast transformation, and then select for kanamycin resistant Streptomyces containing the entire scar cosmid integrated by a single crossover. Restreaking to kanamycin-free medium, followed by screening for concomitant loss of kanamycin resistance and apramycin resistance, then identifies the desired Streptomyces clones.

Preparation of Streptomyces coelicolor protoplasts

1. Add 25 ml YEME medium to a baffled flask. Add $\sim 0.1 \mathrm{ml}$ spore suspension and required growth factors. Incubate $36-40 \mathrm{~h}$ at $30^{\circ} \mathrm{C}$ in an orbital incubator shaker.

- Cultures of S. lividans and S. coelicolor are ready for harvesting when they start to produce red pigment

2. Pour culture broth into a 20 ml screw cap bottle and spin in the bench centrifuge ($\sim 1000 \mathrm{x} \mathrm{g}, 10 \mathrm{~min}$).

- Before centrifugation, examine the culture for contamination by unicellular bacteria, usually indicated by turbidity: the Streptomyces mycelium sediments
quickly while unicellular contaminants remain suspended. In case of doubt, use the microscope.

3. Discard the supernatant carefully; the pellet is easily disturbed.

- If the mycelium does not pellet add 5 ml sterile water to reduce the density of the medium and centrifuge again.

4. Resuspend pellet in $15 \mathrm{ml} 10.3 \%$ sucrose and spin in bench centrifuge as above. Discard supernatant.
5. Repeat step 4.

- The mycelial pellet, without added liquid, can be stored frozen at $-20^{\circ} \mathrm{C}$

6. Resuspend mycelium in 4 ml lysozyme solution ($1 \mathrm{mg} / \mathrm{ml} \mathrm{P}$ buffer, filter sterilised); incubate at $30^{\circ} \mathrm{C}, 15-60 \mathrm{~min}$.
7. Draw in and out of a 5 ml pipette three times and incubate for a further 15 min.

- This helps to free protoplasts from the mycelium so that they will pass through the cotton wool filter used in step 9. At least with S. lividans, it is possible to obtain transformants with unfiltered material, but the washing (steps 9-10) is still needed to remove lysozyme.

8. Add 5 ml P buffer. Repeat step 7.
9. Filter protoplasts through cotton wool (using a filter tube) and transfer to a plastic tube.
10. Sediment protoplasts gently by spinning in a bench centrifuge ($\sim 1000 \mathrm{xg}, 7$ $\min)$.
11. Discard supernatant and suspend protoplasts in 1 ml P buffer.

- At this and any other steps when pelleted protoplasts are to be resuspended, resuspend in the remaining drop of liquid by tapping the side of the tube repeatedly with a finger until the protoplasts are dispersed to form a creamy suspension, then add the suspending P buffer (otherwise the protoplast pellet is difficult to disperse). Avoid vortexing, which induces foaming and consequent lysis. To freeze the protoplasts for storage, place samples of the protoplast suspension in small plastic tubes, close them and place them in ice in a plastic beaker. Place the beaker at $-70^{\circ} \mathrm{C}$ overnight. Free the frozen protoplasts in their tubes from the ice and store at $-70^{\circ} \mathrm{C}$. To thaw, shake the frozen tube under running warm water (i.e. freeze slowly, thaw quickly). To assess the proportion of non-protoplasted units in the suspension, samples can be diluted in parallel in P buffer and in dilute detergent ($\sim \mathbf{0 . 0 1 \%}$ SDS) and plated on regeneration plates. Any colonies arising after dilution in detergent are likely to have arisen from non-protoplasted units.

Rapid small-scale transformation of Streptomyces coelicolor

1. Dispense $50 \mu \mathrm{l}$ samples of protoplasts $\left(\sim 10^{10} / \mathrm{ml}\right)$ into as many tubes as there are transformations.

- We usually spin the protoplasts down immediately before the transformation experiment. This eliminates substances that may have leaked out of the protoplasts during storage and the contents of protoplasts which have lysed spontaneously (which may include nucleases).

2. Complete steps 2a-c for each transformation individually.
a. Add up to $5 \mu \mathrm{l}$ DNA solution to protoplasts and mix immediately by tapping tube.
b. Add $200 \mu \mathrm{l} 25 \%$ PEG 1000 in P buffer and mix by pipetting up and down four times (be careful not to contaminate the barrel of the pipette).
c. Spread protoplast suspension (100-200 $\mu \mathrm{l}$) on two dried R2YE plates. Use P buffer to make dilutions if required.

- $\quad 1 \mathrm{ml}$ glass pipettes can be used instead of spreaders. The solution will spread to some extent by itself if the plates are left on a horizontal surface.

3. Incubate plates at $30^{\circ} \mathrm{C}$. After $14-20 \mathrm{~h}$, flood for kanamycin selection. Score for resistant colonies after 3 d .
4. Select single colony and streak non-selectively for single colonies on MS agar plates and grow $3-4 \mathrm{~d}$ at $30^{\circ} \mathrm{C}$.
5. Replica-plate to DNA agar plates with apramycin $(50 \mu \mathrm{~g} / \mathrm{ml})$ or kanamycin $(50 \mu \mathrm{~g} / \mathrm{ml})$ to screen for apramycin ${ }^{\mathrm{S}}$ and kanamycin ${ }^{\mathrm{S}}$ transformants.

Fig. 4: The λ RED recombination plasmid pKD20 (E. coli Genetic Sock Center CGSC Strain\# 7637; Datsenko and Wanner, 2000) was modified by replacing the ampicillin resistance gene bla by the chloramphenicol resistance gene cat, generating pIJ790. Unlike pKD20, pIJ790 can be selected in presence of Supercos1.

Legend:

araC: encodes arabinose activator
bet: encodes single strand DNA binding protein cat: chloramphenicol resistance gene exo: exonuclease gene, promotes recombination together with bet gam: gene product inhibits the host exonuclease V oriR101: origin of replication

P araBAD: L-arabinose inducible promotor repA101ts: temperature-sensitive replication

The following digestions can be used to verify this plasmid.
BamHI: 6084 bp; EcoRI: 2872 bp, $1703 \mathrm{bp}, 1509$ bp;
NcoI: 3927 bp, 2157 bp; PstI: 5873 bp, 247 bp

Template plasmids

Fig. 5: Template plasmid pIJ773 containing the apramycin resistance gene aac(3)IV ($\mathrm{AC}=\mathrm{X} 99313$) and the oriT of plasmid RP4 (=RK2) (AC=L27758), flanked by FRT sites (FLP recognition targets, see Datsenko and Wanner, 2000). The disruption cassette was cloned into the EcoRV site of pBluescript KS (+) allowing its isolation as a 1382 bp EcoRI/HindIII fragment.

* indicates suitable restriction sites for verification of mutagenised cosmid DNA by restriction analysis (for example: SstI generates a 751 bp internal fragment within the disruption cassette).

2521
aaaagcatct tacggatggc atgacagtaa gagaattatg cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc tgtagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt ctttcctgcg ttatcccotg attctgtgga taaccgtatt accgcctttg agtgagctga taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaatg tgagttagct cactcattag gcaccccagg ctttacactt tatgcttccg gctcgtatgt tgtgtggaat tgtgagcgga taacaatttc acacaggaaa cagctatgac catgattacg ccaagctcgg aattaaccct cactaaaggg aacaaaagct ggagctccac cgcggtggcg gccgctctag aactagtgga tcccccgggc tgcaggaatt cgat

Fig. 6: Template plasmid pIJ778 containing the streptomycin and spectinomycin resistance gene aadA (AC=M60473) and the oriT of plasmid RP4 (=RK2) (AC=L27758), flanked by FRT sites (FLP recognition targets, see Datsenko and Wanner, 2000). The disruption cassette was cloned into the EcoRV site of pBluescript KS (+) allowing its isolation as a 1425 bp EcoRI/HindIII fragment.

* indicates suitable restriction sites for verification of mutagenised cosmid DNA by restriction analysis (for example: NaeI generates a 782 bp internal fragment within the disruption cassette).

2461 TCACTGACTC GCTGCGCTCG GTCGTTCGGC TGCGGCGAGC GGTATCAGCT CACTCAAAGG 2521 CGGTAATACG GTTATCCACA GAATCAGGGG ATAACGCAGG AAAGAACATG TGAGCAAAAG 2581 GCCAGCAAAA GGCCAGGAAC CGTAAAAAGG CCGCGTTGCT GGCGTTTTTC CATAGGCTCC 2641 GCCCCCCTGA CGAGCATCAC AAAAATCGAC GCTCAAGTCA GAGGTGGCGA AACCCGACAG 2701 GACTATAAAG ATACCAGGCG TTTCCCCCTG GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA 2761 CCCTGCCGCT TACCGGATAC CTGTCCGCCT TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC 2821 ATAGCTCACG CTGTAGGTAT CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG 2881 TGCACGAACC CCCCGTTCAG CCCGACCGCT GCGCCTTATC CGGTAACTAT CGTCTTGAGT 2941 CCAACCCGGT AAGACACGAC TTATCGCCAC TGGCAGCAGC CACTGGTAAC AGGATTAGCA 3001 GAGCGAGGTA TGTAGGCGGT GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA 3061 CTAGAAGGAC AGTATTTGGT ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG 3121 TTGGTAGCTC TTGATCCGGC AAACAAACCA CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA 3181 AGCAGCAGAT TACGCGCAGA AAAAAAGGAT CTCAAGAAGA TCCTTTGATC TTTTCTACGG 3241 GGTCTGACGC TCAGTGGAAC GAAAACTCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA 3301 AAAGGATCTT CACCTAGATC CTTTTAAATT AAAAATGAAG TTTTAAATCA ATCTAAAGTA 3361 TATATGAGTA AACTTGGTCT GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG 3421 CGATCTGTCT ATTTCGTTCA TCCATAGTTG CCTGACTCCC CGTCGTGTAG ATAACTACGA 3481 TACGGGAGGG CTTACCATCT GGCCCCAGTG CTGCAATGAT ACCGCGAGAC CCACGCTCAC 3541 CGGCTCCAGA TTTATCAGCA ATAAACCAGC CAGCCGGAAG GGCCGAGCGC AGAAGTGGTC 3601 CTGCAACTTT ATCCGCCTCC ATCCAGTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA 3661 GTTCGCCAGT TAATAGTTTG CGCAACGTTG TTGCCATTGC TACAGGCATC GTGGTGTCAC 3721 GCTCGTCGTT TGGTATGGCT TCATTCAGCT CCGGTTCCCA ACGATCAAGG CGAGTTACAT 3781 GATCCCCCAT GTTGTGCAAA AAAGCGGTTA GCTCCTTCGG TCCTCCGATC GTTGTCAGAA 3841 GTAAGTTGGC CGCAGTGTTA TCACTCATGG TTATGGCAGC ACTGCATAAT TCTCTTACTG 3901 TCATGCCATC CGTAAGATGC TTTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG 3961 AATAGTGTAT GCGGCGACCG AGTTGCTCTT GCCCGGCGTC AATACGGGAT AATACCGCGC 4021 CACATAGCAG AACTTTAAAA GTGCTCATCA TTGGAAAACG TTCTTCGGGG CGAAAACTCT 4081 CAAGGATCTT ACCGCTGTTG AGATCCAGTT CGATGTAACC CACTCGTGCA CCCAACTGAT 4141 CTTCAGCATC TTTTACTTTC ACCAGCGTTT CTGGGTGAGC AAAAACAGGA AGGCAAAATG 4201 CCGCAAAAAA GGGAATAAGG GCGACACGGA AATGTTGAAT ACTCATACTC TTCCTTTTTC 4261 AATATTATTG AAGCATTTAT CAGGGTTATT GTCTCATGAG CGGATACATA TTTGAATGTA 4321 TTTAGAAAAA TAAACAAATA GGGGTTCCGC GCACATTTCC CCGAAAAGTG CCACCTG

Fig. 7: Template plasmid pIJ780 containing the viomycin resistance gene vph (AC=X99314) and the oriT of plasmid RP4 (=RK2) (AC=L27758), flanked by FRT sites (FLP recognition targets, see Datsenko and Wanner, 2000). The disruption cassette was cloned into the EcoRV site of pBluescript KS (+) allowing its isolation as a 1497 bp EcoRI/HindIII fragment.

* indicates suitable restriction sites for verification of mutagenised cosmid DNA by restriction analysis (for example: HincII generates a 1137 bp internal fragment within the disruption cassette).

2461 AACAGCGGTA AGATCCTTGA GAGTTTTCGC CCCGAAGAAC GTTTTCCAAT GATGAGCACT 2521 TTTAAAGTTC TGCTATGTGG CGCGGTATTA TCCCGTATTG ACGCCGGGCA AGAGCAACTC 2581 GGTCGCCGCA TACACTATTC TCAGAATGAC TTGGTTGAGT ACTCACCAGT CACAGAAAAG 2641 CATCTTACGG ATGGCATGAC AGTAAGAGAA TTATGCAGTG CTGCCATAAC CATGAGTGAT 2701 AACACTGCGG CCAACTTACT TCTGACAACG ATCGGAGGAC CGAAGGAGCT AACCGCTTTT 2761 TTGCACAACA TGGGGGATCA TGTAACTCGC CTTGATCGTT GGGAACCGGA GCTGAATGAA 2821 GCCATACCAA ACGACGAGCG TGACACCACG ATGCCTGTAG CAATGGCAAC AACGTTGCGC 2881 AAACTATTAA CTGGCGAACT ACTTACTCTA GCTTCCCGGC AACAATTAAT AGACTGGATG 2941 GAGGCGGATA AAGTTGCAGG ACCACTTCTG CGCTCGGCCC TTCCGGCTGG CTGGTTTATT 3001 GCTGATAAAT CTGGAGCCGG TGAGCGTGGG TCTCGCGGTA TCATTGCAGC ACTGGGGCCA 3061 GATGGTAAGC CCTCCCGTAT CGTAGTTATC TACACGACGG GGAGTCAGGC AACTATGGAT 3121 GAACGAAATA GACAGATCGC TGAGATAGGT GCCTCACTGA TTAAGCATTG GTAACTGTCA 3181 GACCAAGTTT ACTCATATAT ACTTTAGATT GATTTAAAAC TTCATTTTTA ATTTAAAAGG 3241 ATCTAGGTGA AGATCCTTTT TGATAATCTC ATGACCAAAA TCCCTTAACG TGAGTTTTCG 3301 TTCCACTGAG CGTCAGACCC CGTAGAAAAG ATCAAAGGAT CTTCTTGAGA TCCTTTTTTT 3361 CTGCGCGTAA TCTGCTGCTT GCAAACAAAA AAACCACCGC TACCAGCGGT GGTTTGTTTG 3421 CCGGATCAAG AGCTACCAAC TCTTTTTCCG AAGGTAACTG GCTTCAGCAG AGCGCAGATA 3481 CCAAATACTG TCCTTCTAGT GTAGCCGTAG TTAGGCCACC ACTTCAAGAA CTCTGTAGCA 3541 CCGCCTACAT ACCTCGCTCT GCTAATCCTG TTACCAGTGG CTGCTGCCAG TGGCGATAAG 3601 TCGTGTCTTA CCGGGTTGGA CTCAAGACGA TAGTTACCGG ATAAGGCGCA GCGGTCGGGC 3661 TGAACGGGGG GTTCGTGCAC ACAGCCCAGC TTGGAGCGAA CGACCTACAC CGAACTGAGA 3721 TACCTACAGC GTGAGCTATG AGAAAGCGCC ACGCTTCCCG AAGGGAGAAA GGCGGACAGG 3781 TATCCGGTAA GCGGCAGGGT CGGAACAGGA GAGCGCACGA GGGAGCTTCC AGGGGGAAAC 3841 GCCTGGTATC TTTATAGTCC TGTCGGGTTT CGCCACCTCT GACTTGAGCG TCGATTTTTG 3901 TGATGCTCGT CAGGGGGGCG GAGCCTATGG AAAAACGCCA GCAACGCGGC CTTTTTACGG 3961 TTCCTGGCCT TTTGCTGGCC TTTTGCTCAC ATGTTCTTTC CTGCGTTATC CCCTGATTCT 4021 GTGGATAACC GTATTACCGC CTTTGAGTGA GCTGATACCG CTCGCCGCAG CCGAACGACC 4081 GAGCGCAGCG AGTCAGTGAG CGAGGAAGCG GAAGAGCGCC CAATACGCAA ACCGCCTCTC 4141 CCCGCGCGTT GGCCGATTCA TTAATGCAGC TGGCACGACA GGTTTCCCGA CTGGAAAGCG 4201 GGCAGTGAGC GCAACGCAAT TAATGTGAGT TAGCTCACTC ATTAGGCACC CCAGGCTTTA 4261 CACTTTATGC TTCCGGCTCG TATGTTGTGT GGAATTGTGA GCGGATAACA ATTTCACACA 4321 GGAAACAGCT ATGACCATGA TTACGCCAAG CTCGGAATTA ACCCTCACTA AAGGGAACAA 4381 AAGCTGGAGC TCCACCGCGG TGGCGGCCGC TCTAGAACTA GTGGATCCCC CGGGCTGCAG 4441 GAATTCGAT

Strains:

Strain designation: BW25113/pIJ790

Plasmid: pIJ790 [oriR101], [repA101(ts)], araBp-gam-be-exo
Chromosome: ($\Delta\left(\right.$ araD-araB)567, \quad IlacZ4787(::rrnB-4), lacIp-4000(lacI $\left.{ }^{\mathrm{Q}}\right), \quad \lambda^{-}$,
 this strain should be grown on rich medium containing chloramphenicol $(25 \mu \mathrm{~g} / \mathrm{ml})$ at $30^{\circ} \mathrm{C}$.

Strain designation: DH5 $\alpha / \mathbf{p I J 7 7 3}$

Plasmid: pBluescript KS (+), aac(3)IV, oriT (RK2), FRT sites chromosomal marker: see Stratagene, this strain should be grown on rich medium containing carbenicillin $(100 \mu \mathrm{~g} / \mathrm{ml})$ and apramycin $(50 \mu \mathrm{~g} / \mathrm{ml})$ at $37^{\circ} \mathrm{C}$.

Strain designation: DH5 $\alpha /$ pIJ778

Plasmid: pBluescript KS (+), aadA, oriT (RK2), FRT sites chromosomal marker: see Stratagene, this strain should be grown on rich medium containing carbenicillin ($100 \mu \mathrm{~g} / \mathrm{ml}$), streptomycin $(50 \mu \mathrm{~g} / \mathrm{ml})$ and spectinomycin $(50 \mu \mathrm{~g} / \mathrm{ml})$ at $37^{\circ} \mathrm{C}$.

Strain designation: DH5 $\alpha / \mathbf{p I J 7 8 0}$

Plasmid: pBluescript KS (+), vph, oriT (RK2), FRT sites
chromosomal marker : see Stratagene,
this strain should be grown on DNA (Difco Nutrient Agar), 2XYT broth or DNB (Difco Nutrient broth) containing carbenicillin ($100 \mu \mathrm{~g} / \mathrm{ml}$) and viomycin ($30 \mu \mathrm{~g} / \mathrm{ml}$) at $37^{\circ} \mathrm{C}$.

Strain: DH5 $\alpha /$ BT340 (Datsenko and Wanner, 2000) can be ordered from:
E. coli Genetic Stock Center

830 Kline Biology Tower
MCD Biology Department
266 Whitney Ave. Box 208103
Yale University
New Haven, CT 06520-81033
Tel. (0044) (203) 432-9997 Fax -6161
email: berlyn@cgsc.biology.yale.edu
webpage: http://cgsc.biology.yale.edu

Strains DH5 $\alpha / \mathbf{p I J 7 7 9}$ and DH5 $\alpha /$ pIJ781 will be send separately on request,

 please contact:Plant Bioscience Limited, Dr Karin Schofield
Technology Acquisition \& Technology ManagerNorwich Research Park, Colney, Norwich, NR4 7UH, UKEmail: karin@plantbioscience.com
Tel: +44 (0) 1603 456500; Fax: +44 (0) 1603456552
www.plantbioscience.com

Media: for more detailed information see:

Kieser T, Bibb MJ, Buttner MJ, Chater KF and Hopwood DA (2000)

Practical Streptomyces Genetics, John Innes Foundation, Norwich Research Park, Colney, Norwich NR4 7UH, England

Agar Media

Note: MS medium (Mannitol Soya flour Medium) is also known as SFM medium (Kieser et al., 2000).

R2 Medium (Okanishi et al., 1974; Hopwood and Wright, 1978)
Make up the following solution:

Sucrose	103 g
$\mathrm{~K}_{2} \mathrm{SO}_{4}$	0.25 g
$\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	10.12 g
Glucose	10 g
Difco Casaminoacids	0.1 g
Distilled water	800 ml

Pour 80 ml of the solution into 250 ml Erlenmeyer flasks each containing 2.2 g Difco Bacto agar. Close the flasks and autoclave. At time of use, remelt the medium and add to each flask the following autoclaved solutions in the order listed:

$\mathrm{KH}_{2} \mathrm{PO}_{4}(0.5 \%)$	1 ml
$\mathrm{CaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(3.68 \%)$	8 ml
L-proline (20\%)	1.5 ml
TES buffer (5.73\%, adjusted to pH 7.2$)$	10 ml
${ }^{1}$ Trace element solution	0.2 ml
$\mathrm{NaOH}(1 \mathrm{~N})$ (unsterilised is OK)	0.5 ml
Required growth factors for auxotrophs	0.75 ml each

(For stock solutions, see Kieser et al., 2000)
${ }^{1}$ Trace element solution $\left(1^{-1}\right)$:

ZnCl_{2}	40 mg
$\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	200 mg
$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	10 mg
$\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	10 mg
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$	10 mg
$\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	10 mg

R2YE Medium

Make up in the same way as R2, but add 5 ml of Difco yeast extract (10\%) to each 100 ml flask at time of use

R5 Medium

This is an alternative way of making R2YE. It obviously saves time at the bench. For most purposes it seems satisfactory, but there is some folklore suggesting that R2YE made by the traditional process gives more reproducible results.

Make up the following solution:

Sucrose	103 g
$\mathrm{~K}_{2} \mathrm{SO}_{4}$	0.25 g
$\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} 0$	10.12 g
Glucose	10 g
Difco Casaminoacids	0.1 g
${ }^{1}$ Trace element solution	2 ml
Difco yeast extract	5 g
TES buffer	5.73 g
Distilled water to	1000 ml

${ }^{1}$ The same as in R2 and R2YE.

Pour 100 ml of the solution into 250 ml Erlenmeyer flasks each containing 2.2 g Difco Bacto agar. Close the flasks and autoclave. At time of use, re-melt the medium and add to each flask in the order listed:

$\mathrm{KH}_{2} \mathrm{PO}_{4}(0.5 \%)$	1 ml
$\mathrm{CaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{M})$	0.4 ml
L-proline (20%)	1.5 ml
$\mathrm{NaOH}(1 \mathrm{~N})$	0.7 ml
Any required growth factors for auxotrophs	0.75 ml each

Mannitol Soya flour Medium (MS) Hobbs et al. (1989). Sometimes referred to as "SFM".

Agar	20 g
Mannitol	20 g
${ }^{1}$ Soya flour	20 g
Tap water	1000 ml

${ }^{1}$ Use soya flour from a health food shop or supermarket, not the expensive material from a laboratory supplier.

Dissolve the mannitol in the water and pour 200 ml into 250 ml Erlenmeyer flasks each containing 2 g agar and 2 g soya flour. Close the flasks and autoclave twice $\left(115^{\circ} \mathrm{C}, 15 \mathrm{~min}\right)$, with gentle shaking between the two runs.

Difco nutrient agar (DNA)

Place 4.6 g Difco Nutrient Agar in each 250 ml Erlenmeyer flask and add 200 ml distilled water. Close the flasks and autoclave.

L agar

Agar 10 g
Difco Bacto tryptone $\quad 10 \mathrm{~g}$
$\mathrm{NaCl} \quad 5 \mathrm{~g}$
Glucose $\quad 1 \mathrm{~g}$
Distilled water up to 1000 ml

Dissolve the ingredients, except agar, in the distilled water and pour 200 ml into 250 ml Erlenmeyer flasks each containing 2 g agar. Close the flasks and autoclave.

Liquid media

Yeast extract-malt extract medium (YEME)

Difco yeast extract 3 g
Difco Bacto-peptone 5 g
Oxoid malt extract 3 g
Glucose $\quad 10 \mathrm{~g}$
Sucrose $\quad 340 \mathrm{~g}(34 \%$ final $)$
Distilled water up to 1000 ml

After autoclaving, add:
$\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{M}) \quad 2 \mathrm{ml} /$ litre (5 mM final)

For preparing protoplasts, also add:
${ }^{1}$ Glycine (20\%)
$25 \mathrm{ml} /$ litre (0.5% final)
${ }^{1}$ Different Streptomyces strains may need different concentrations of glycine; 0.5% is best for S. lividans and S. coelicolor.

Tryptone soya broth (TSB)

Oxoid Tryptone Soya Broth powder (CM129) 30 g
Distilled water
1000 ml

Difco nutrient broth (DNB)

Difco Nutrient Broth powder
8 g
Distilled water
1000 ml

L (Lennox) broth (LB)

Difco Bacto tryptone
10 g
Difco yeast extract $\quad 5 \mathrm{~g}$
$\mathrm{NaCl} \quad 5 \mathrm{~g}$
Glucose $\quad 1 \mathrm{~g}$
Distilled water 1000 ml

2 X YT medium

Difco Bacto tryptone 16 g
Difco Bacto yeast extract $\quad 10 \mathrm{~g}$
NaCl
Water 1000 ml

Buffers

\mathbf{P} (protoplast) buffer

Make up the following basal solution:

Sucrose	103 g
$\mathrm{~K}_{2} \mathrm{SO}_{4}$	0.25 g
$\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} 0$	2.02 g
${ }^{1}$ Trace element solution	2 ml
Distilled water to	800 ml

${ }^{1}$ The same as in R2 and R2YE.

Dispense in 80 ml aliquots and autoclave. Before use, add to each flask in order:

$\mathrm{KH}_{2} \mathrm{PO}_{4}(0.5 \%)$	1 ml
$\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} 0(3.68 \%)$	10 ml
TES buffer $(5.73 \%$, adjusted to pH 7.2$)$	10 ml

T (transformation) buffer

Mix the following sterile solutions:
Sucrose (10.3\%) 25 ml

Distilled water $\quad 75 \mathrm{ml}$
${ }^{1}$ Trace element solution 0.2 ml
$\mathrm{K}_{2} \mathrm{SO}_{4}(2.5 \%) \quad 1 \mathrm{ml}$
${ }^{1}$ The same as in R2 and R2YE.
To 9.3 ml of the above solution add:
CaCl_{2} (5M)
0.2 ml
${ }^{1}$ Tris-maleic acid buffer
0.5 ml
${ }^{1}$ Make up a 1 M solution of Tris and adjust to pH 8.0 by adding maleic acid. For use, add 3 parts by volume of the above solution to 1 part by weight of PEG 1000, previously sterilised by autoclaving.

L (lysis) buffer (Thompson et al., 1982)
Mix the following sterile solutions:

Sucrose (10.3\%)	100 ml
TES buffer (5.73\%, adjusted to pH7.2)	10 ml
$\mathrm{K}_{2} \mathrm{SO}_{4}(2.5 \%)$	1 ml
${ }^{1} \mathrm{Trace} \mathrm{element} \mathrm{solution} \mathrm{KH}_{2} \mathrm{PO}_{4}(0.5 \%)$	0.2 ml
$\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{M})$	1 ml
$\mathrm{CaCl}_{2}(0.25 \mathrm{M})$	0.1 ml
	1 ml

${ }^{1}$ The same as in R2 and R2YE.

This stock solution keeps indefinitely. Just before use dissolve lysozyme in a sample of the solution at a concentration of $1 \mathrm{mg} / \mathrm{ml}$ and sterilise by filtration.

The CD-ROM includes:

1. Manual as Microsoft Word document and Adobe Acrobat document (X:/Protocol/)
2. Sequences of template plasmids as plain sequence files and as EMBL files (X:/Template plasmids/)
3. Sequences of the S. coelicolor real cosmids (X:/S_coelicolor/cosmid inserts)

Literature

Bennett, P.M., Grinsted, J. and Richmond, M.H. (1977) Mol.Gen.Genet., 154, 205-211
Cherepanov , P.P and Wackernagel, W. (1995) Gene, 158, 9-14
Datsenko, K.A. and Wanner, B.L. (2000) Proc. Natl. Acad. Sci. USA 97, 6640-6645
Flett, F., Mersinias, V. and Smith, C.P. (1997) FEMS Microbiol.Lett., 155, 223-229
Hobbs G, Frazer CM, Gardner DCJ, Cullum JA, Oliver SG (1989) Appl.Microbiol.Biotechnol., 31, 272-277.

Hodgson DA (1982) J.Gen.Microbiol.,128, 2417-2430.
Hopwood DA (1967) Bacteriol.Rev., 31, 373-403.
Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CJ, Ward JM, and Schrempf H. (1985) Norwich: The John Innes Foundation

Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. and Hopwood, D.A. (2000) Practical Streptomyces Genetics: John Innes Foundation, Norwich Research Park, Colney, Norwich NR4 7UH, UK

MacNeil, D.J., Gewain, K.M., Ruby, C.L., Dezeny, G., Gibbons, P.H. and MacNeil, T. (1992) Gene, 111, 61-68

Matsushima ,P., Broughton, M.C., Turner, J.R. and Baltz, R.H. (1994) Gene, 146, 39-45
Redenbach, M., Kieser, H.M., Denapaite, D., Eichner, A., Cullum, J., Kinashi, H. and Hopwood, D.A. (1996) Mol. Microbiol., 21, 77-96

Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Habor, NY.

Strauch E, Takano E, Baylis H, Bibb MJ (1991) Mol.Microbiol., 5, 289-298.

