
Machine access to StrepDB data

Govind Chandra <govind.chandra@jic.ac.uk>

December 23, 2011

1 Introduction

This document describes how you may access the data behind StrepDB from your scripts and programs. All
you need is some familiarity with SQL and a knowledge of structures of the tables behind StrepDB. Since
StrepDB provides access to information about more than one species of Streptomyces, the organization of
database is different from what it used to be for ScoDB.

The features of all species and all their DNA molecules are now stored in one table named features. In this
table, accession and serial make the primary key i.e. no two features will have the same accession and serial.
I will refer to this combination of accession and serial as accser. Information about proteins (from all species)
is in the table proteins. In this table also, accession and serial make up the primary key. Of course, this table
contains only those accsers which are proteins. The link between features and proteins are the accsers. To
make querying simpler some views have been made. So the view vprot has columns both from features and
proteins tables. For the purpose of querying views behave exactly as tables.

2 The URL

The URL you need to send your queries to is:
http://strepdb.streptomyces.org.uk/cgi-bin/strepapi.pl
See section 4 for an example of how to send queries to this URL to retrieve information from StrepDB.

3 Relevant tables and views

3.1 Tables features and proteins

Table "public.features"
Column | Type | Modifiers

------------+----------+-----------
id | text |
pri_tag | text |
accession | text | not null
serial | bigint | not null
start_pos | integer |
end_pos | integer |
strand | smallint |
annotation | text |
product | text |
db_xref | text |

1

Table "public.proteins"
Column | Type | Modifiers

-----------+---------+-----------
accession | text | not null
serial | bigint | not null
gene | text |
aa_seq | text |
nt_seq | text |
pi | real |
mol_wt | integer |

Although features and proteins are described above, you will probably not need to query them directly.
Instead you should be able to get all information you want by querying the view vprot described below.

3.2 View vprot

This view combines some columns from the features and proteins tables.

View "public.vprot"
Column | Type | Modifiers

------------+----------+-----------
id | text |
pri_tag | text |
accession | text |
serial | bigint |
start_pos | integer |
end_pos | integer |
strand | smallint |
annotation | text |
product | text |
db_xref | text |
aa_seq | text |
nt_seq | text |
gene | text |
pi | real |
mol_wt | integer |

3.3 Gene names

The gene column of vprot contains gene names. At least for some species, this column contains gene identi-
fiers (id) as well. The only was to deal with this is to get all the genes and extract out canonical gene names
using another script.

Some gene names, which have been suggested by users of StrepDB are in the view vnames.

View "public.vnames"
Column | Type | Modifiers

-----------+--------+-----------
accession | text |
serial | bigint |
id | text |
oname | text |
gene | text |
reference | text |

2

comment | text |
email | text |

This view can be queried as usual. oname is the column which contains the suggested gene name.

3.4 Accessions

Each DNA molecule of each species has a different accession number. This, and other information, are stored
in the table organisms. There is no view for this table. You can query it directly.

Table "public.organisms"
Column | Type | Modifiers

-----------+------+-----------
name | text |
accession | text | not null
file | text |
pre | text |
taxonomy | text |
molecule | text |
tla | text |

strepdb=> select accession, name, molecule from organisms;

accession | name | molecule
-----------+----------------------------------+----------
AL645882 | Streptomyces coelicolor A3(2) | chr
AP005645 | Streptomyces avermitilis MA-4680 | sap1
BA000030 | Streptomyces avermitilis MA-4680 | chr
AL589148 | Streptomyces coelicolor A3(2) | scp1
AL645771 | Streptomyces coelicolor A3(2) | scp2
Ssc | Streptomyces scabies | chr
NC_010572 | Streptomyces griseus | chr

You need the organisms to find out accession numbers. Since vprot contains information about all the species
you need to select information for only the species you want in you query. This is done by specifying an
accession in your query.

select gene, id, product from vprot where product ~* ’sigma’ and
accession = ’AL645882’;

Or you you want to query on the chromosome as well as the plasmids of S. coelicolor

select gene, id, product from vprot where product ~* ’sigma’ and
accession in (select accession from organisms where name ~* ’coelicolor’);

3.5 View vpubs

This view contains literature references and their associations with different genes. This view is derived from
3 tables (pubmed, journals, and ref_link) and one view (vprot).

3

View "public.vpubs"
Column | Type | Modifiers

-----------+---------+-----------
id | text |
gene | text |
accession | text |
serial | bigint |
author | text |
title | text |
journal | text |
pmid | bigint |
pubdate | integer |
pubtype | text |
volume | text |
issue | text |
page | text |
nlmid | text |

Some column names explained.

• journal: This is the full name of the journal.
• pmid: This is the pubmed identifier for the article.
• pubdate: This is only the year of publication, not the complete date.
• nlmid: Journals are also given unique identifiers by pubmed.

3.6 View vtn5

This view is derived from the tables features and tn5.

Column | Type | Modifiers
-----------+----------+-----------
id | text |
accession | text |
serial | bigint |
start_pos | integer |
end_pos | integer |
strand | smallint |
cosmid | text |
cos_pos | integer |
gene | text |
egfp | boolean |

In this view start_pos and end_pos columns have identical values.

• cosmid: This is the cosmid on which mutagenesis was carried out.
• start_pos and end_pos: This is the position on the genome where the insertion happened. These two

columns have identical values in this table because this is a point location.
• cos_pos: Position of the insertion in the cosmid.
• gene: If the insertion went into a CDS then this column holds the identifier of the CDS.
• egfp: I am not sure about this. Probably indicates whether egfp is in frame or not.

4 Example script

Below is an example Perl script to get information from StrepDB.

4

#!/usr/bin/perl
use strict;
use LWP::UserAgent;

you might have to uncomment and edit the line below
if you are behind a proxy.
$ENV{http_proxy}=’http://your.proxy.server:proxyport’;
below is what I have to use.
#$ENV{http_proxy}=’http://wwwcache.bbsrc.ac.uk:8080’;

Create a user agent object
my $ua = LWP::UserAgent->new;
here is our SQL query
my $query="select id, gene, product from vprot where product ~* ’sigma’ and accession = ’AL589148’";
Create a request object
my $request = HTTP::Request->new(POST => ’http://strepdb.streptomyces.org.uk/cgi-bin/strepapi.pl’);
specify the content type
$request->content_type(’application/x-www-form-urlencoded’);
load some content
$request->content("query=$query");

uncomment below to see exactly what is going to the server.
print("\n", $request->as_string(), "\n");

Pass request to the user agent and get a response back
my $result = $ua->request($request);
Check the outcome of the response
if ($result->is_success) {
print $result->content;
}
else {
print $result->status_line, "\n";
}

4.1 Example queries for vpubs

select id, author, pubdate, journal, title from vpubs where gene ∼ ? ’whig’;

The above query gets all the publications associated with genes which have ‘whig’ in their gene field. The
problem with this query is that if three species have genes named whig we get all records thrice. This can be
dealt with in two ways.

select id, author, pubdate, journal, title from vpubs where gene ∼ ? ’whig’
and accession = ’AL645882’;

The above will ensure that ‘whig’ of only the chromosome of S. coelicolor is considered. Below is an-
other (better?) way of preventing duplicates.

select distinct(pmid), author, pubdate, journal, title from vpubs where gene
∼ ? ’whig’;

The above query simply says that we do not want duplicate pmids. This query will actually look at all
accessions but suppress duplicate records. Whether you want the pmids or not you have to ask for them in
the query. If you do not want them, just ignore them subsequently. It is also important not to ask for a column
whose value is different in different accessions. This will again result in duplicate (or more) pmids being
listed. For example in the query below, asking for id effectively nullifies the effect of distinct(pmid).

select distinct(pmid), id, author, pubdate, journal, title from vpubs where
gene ∼ ? ’whig’;

5

4.2 Example queries for vtn5

select id, start_pos, strand, cosmid, cos_pos, egfp from vtn5;

select count(*) from vtn5;

5 What you get

When you send a request with a SQL query in it, and the query is successful, you are returned a XML
document with the information your query retrieved. The root node of this XML document is recordset and
each record your query retrieved is contained in record nodes. So, for example, the query below

select id, gene, product from vprot where product ~* ’sigma’
and accession = ’AL589148’

returns

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE recordset>

<recordset>
<record>

<id>SCP1.116</id>
<gene>SCP1.116</gene>
<product>putative ECF-family sigma factor</product>

</record>
<record>

<id>SCP1.151</id>
<gene>SCP1.151c</gene>
<product>putative sigma factor</product>

</record>
</recordset>

6 When things don’t work

First of all try the example script given in section 4, changing only the line shown below if you need to.

$ENV{http_proxy}=’http://wwwcache.bbsrc.ac.uk:8080’;

Unfortunately it is not possible to list all reasons for failure here.

• Make sure your script compiles properly.
• Make sure you have a working internet connection.
• Double check your http proxy setting.

If your are reasonably sure the problem is at my end. Email me. Please include as many details as possible
in the mail. Be sure to include the script or program (source) you are using.

7 Caveats

Although significant effort is made to ensure accuracy of information in StrepDB there is no guarantee that
there are no errors. Quite a lot of information is computationally generated. e.g. references are assigned to

6

genes by a (rather simplistic) computational procedure. Such information will almost certainly have errors in
it. You are strongly advised to manually check the suitablity of the information you access from StrepDB for
the purpose for which you intend to use it.

7

